Tag Archives: compressor for air

China OEM 250 Kw Air Cooled Rotary Screw Type Air Compressor for Concrete Breaker best air compressor

Product Description

0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages

1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
 
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
 
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow 
 
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
 
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
 
6.Smart touch screen design and 0 pressure drop design
 
7.Higher efficiency cooling system and electrical motor
 
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.

Technical Parameters Of Energy Saving Rotary Screw Air Compressor 

Model Maxinmum working Capacity(FAD)* Installed motor power Driving mode& Noise Dimensions(mm) Weight Air outlet
pressure 50 HZ 60 HZ Cooling method level** pipe diameter
bar(g) psig m3/min cfm m3/min cfm kw hp   dB(A) L W H kg  
DA-5 7.5  109 0.80  28 0.80  28 5.5 7.5 Belt Driven 75 900 600 860 315 G3/4″
8.5  123 0.78  28 0.78  28 5.5 7.5 Air Cooling 75 900 600 860
DA-7 7.5  109 1.09  39 1.09  39 7.5 10   75 900 600 860 315 G3/4″
8.5  123 1.07  38 1.07  38 7.5 10   75 900 600 860
10.5  152 0.92  32 0.91  32 7.5 10   75 900 600 860
13.0  189 0.73  26 0.72  26 7.5 10   75 900 600 860
DA-11 7.5  109 1.66  59 1.66  59 11 15   75 1230 650 900 324 G3/4″
8.5  123 1.64  58 1.64  58 11 15   75 1230 650 900
10.5  152 1.45  51 1.45  51 11 15   75 1230 650 900
13.0  189 1.13  40 1.12  40 11 15   75 1230 650 900
DA-15 7.5  109 2.54  90 2.53  89 15 20 Direct Driven 75 1465 990 1345 453 G1-1/4″
8.5  123 2.51  88 2.50  88 15 20 Air Cooling 75 1465 990 1345
10.5  152 1.97  70 1.86  66 15 20   75 1465 990 1345
13.0  189 1.91  67 1.83  65 15 20   75 1465 990 1345
DA-18 7.5  109 3.04  107 3.65  129 18.5 25   75 1465 990 1345 453 G1-1/4″
8.5  123 3.03  107 3.63  128 18.5 25   75 1465 990 1345
10.5  152 3.00  106 2.38  84 18.5 25   75 1465 990 1345
13.0  189 1.91  67 2.36  83 18.5 25   75 1465 990 1345
DA-22 7.5  109 3.57  126 3.65  129 22 30   75 1465 990 1345 477 G1-1/4″
8.5  123 3.55  125 3.63  128 22 30   75 1465 990 1345
10.5  152 3.00  106 2.38  84 22 30   75 1465 990 1345
13.0  189 2.97  105 2.36  83 22 30   75 1465 990 1345
DA-30 7.5  109 5.28  187 4.49  159 30 40   85 1600 1250 1550 682 G1-1/2″
8.5  123 5.26  186 4.48  158 30 40   85 1600 1250 1550
10.5  152 5.21  184 4.47  158 30 40   85 1600 1250 1550
13.0  189 3.45  122 3.58  126 30 40   85 1600 1250 1550
DA-37 7.5  109 6.54  231 6.33  224 37 50   85 1600 1250 1550 728 G1-1/2″
8.5  123 6.52  230 6.30  222 37 50   85 1600 1250 1550
10.5  152 5.21  184 4.47  158 37 50   85 1600 1250 1550
13.0  189 5.16  182 4.43  156 37 50   85 1600 1250 1550
DA-45 7.5  109 7.67  271 7.79  275 45 60   85 1600 1250 1550 728 G1-1/2″
8.5  123 7.62  269 7.76  574 45 60   85 1600 1250 1550
10.5  152 6.46  228 6.24  220 45 60   85 1600 1250 1550
13.0  189 6.41  226 4.44  157 45 60   85 1600 1250 1550
DA-55 7.5  109 9.76  345 9.14  323 55 75   85 1876 1326 1700 1310 G2″
8.5  123 9.67  342 9.06  320 55 75   85 1876 1326 1700
10.5  152 7.53  266 7.74  273 55 75   85 1876 1326 1700
13.0  189 7.40  261 6.30  222 55 75   85 1876 1326 1700
DA-75 7.5  109 14.21  502 11.72  414 75 100   85 1876 1326 1700 1325 G2″
8.5  123 12.55  443 11.63  411 75 100   85 1876 1326 1700
10.5  152 9.51  336 11.43  404 75 100   85 1876 1326 1700
13.0  189 9.23  326 8.75  309 75 100   85 1876 1326 1700
DA-90(W) 7.5  109 16.62  587 17.01  601 90 120 Direct Driven 72 2450 1800 1700 2450 DN80
8.5  123 16.37  578 16.82  594 90 120 Air Cooling Or 72 2450 1800 1700
10.5  152 14.21  502 14.87  525 90 120 Water Cooling 72 2450 1800 1700
13.0  189 11.77  416 11.27  398 90 120   72 2450 1800 1700
DA-110(W) 7.5  109 20.13  711 19.10  674 110 150   72 2450 1800 1700 2500 DN80
8.5  123 20.05  708 19.06  673 110 150   72 2450 1800 1700
10.5  152 16.33  576 17.01  601 110 150   72 2450 1800 1700
13.0  189 14.11  498 14.68  518 110 150   72 2450 1800 1700
DA-132(W) 7.5  109 22.85  807 24.37  861 132 175   72 2450 1800 1700 2600 DN80
8.5  123 22.73  802 24.23  856 132 175   72 2450 1800 1700
10.5  152 19.88  702 18.95  669 132 175   72 2450 1800 1700
13.0  189 16.51  583 16.82  594 132 175   72 2450 1800 1700
DA-160(W) 7.5  109 26.92  950 27.90  985 160 215   78 2650 1700 1850 3200 DN80
8.5  123 26.86  949 27.76  980 160 215   78 2650 1700 1850
10.5  152 22.44  792 23.97  846 160 215   78 2650 1700 1850
13.0  189 19.63  693 18.82  664 160 215   78 2650 1700 1850
DA-185(W) 7.5  109 28.89  1571 30.53  1078 185 250   78 2650 1700 1850 3300 DN80
8.5  123 28.84  1018 30.44  1075 185 250   78 2650 1700 1850
10.5  152 25.11  886 27.46  970 185 250   78 2650 1700 1850
13.0  189 22.08  780 23.69  836 185 250   78 2650 1700 1850
DA-200(W) 7.5  109 31.88  1126 30.53  1078 200 270   80 3000 1950 2030 4750 DN100
8.5  123 31.82  1124 30.44  1075 200 270   80 3000 1950 2030
10.5  152 28.48  1006 30.22  1067 200 270   80 3000 1950 2030
13.0  189 25.00  883 27.07  956 200 270   80 3000 1950 2030
DA-220(W) 7.5  109 36.20  1278 37.22  1314 220 300   80 3000 1950 2030 4800 DN100
8.5  123 36.15  1276 37.17  1312 220 300   80 3000 1950 2030
10.5  152 31.71  1120 33.25  1174 220 300   80 3000 1950 2030
13.0  189 28.48  1006 27.07  956 220 300   80 3000 1950 2030
DA-250(W) 7.5  109 43.31  1529 42.87  1514 250 350   80 3000 1950 2030 4850 DN100
8.5  123 43.24  1527 41.30  1458 250 350   80 3000 1950 2030
10.5  152 36.03  1272 37.04  1308 250 350   80 3000 1950 2030
13.0  189 31.55  1114 33.15  1170 250 350   80 3000 1950 2030
DA-280(W) 7.5  109 46.59  1645 47.16  1665 280 375   85 3700 2300 2450 5200 DN125
8.5  123 46.53  1643 45.64  1612 280 375   85 3700 2300 2450
10.5  152 42.95  1516 42.56  1503 280 375   85 3700 2300 2450
13.0  189 35.89  1267 36.95  1305 280 375   85 3700 2300 2450
DA-315(W) 7.5  109 53.16  1877 50.88  1797 315 425   85 3700 2300 2450 6000 DN125
8.5  123 52.63  1858 50.83  1795 315 425   85 3700 2300 2450
10.5  152 43.05  1520 46.27  1634 315 425   85 3700 2300 2450
13.0  189 42.93  1516 40.32  1424 315 425   85 3700 2300 2450
DA-355(W) 7.5  109 63.37  2238 58.12  2052 355 475   85 4500 2500 2450 7000 DN125
8.5  123 63.16  2230 56.54  1997 355 475   85 4500 2500 2450
10.5  152 52.63  1858 51.57  1821 355 475   85 4500 2500 2450
13.0  189 43.79  1546 45.35  1601 355 475   85 4500 2500 2450
DA-400(W) 7.5  109 70.99  2507 61.72  2179 400 550   85 4500 2500 2450 8000 DN125
8.5  123 70.64  2494 59.72  2109 400 550   85 4500 2500 2450
10.5  152 52.63  1858 56.52  1996 400 550   85 4500 2500 2450
13.0  189 46.34  1636 51.35  1813 400 550   85 4500 2500 2450

*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.

DENAIR Factory & Product Lines

DENAIR Exhibition

We carefully selected for you the classic case

Enhanced Energy Saving Air Compressor in Oman

Project Name: Sandblasting in Muscat, Oman.

Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.

Model No. & Qty: DA-75+ x 1.

Working Time: From June, 2016 till now

Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.

FAQ

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China

Q3: Warranty terms of your air compressor machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the air compressor? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China OEM 250 Kw Air Cooled Rotary Screw Type Air Compressor for Concrete Breaker   best air compressorChina OEM 250 Kw Air Cooled Rotary Screw Type Air Compressor for Concrete Breaker   best air compressor
editor by CX 2023-10-17

China Custom 11kw 15HP Running Stably Zero Failure Rate Screw Air Compressor air compressor for sale

Product Description

Product Description

Our company provides you with a full set of industrial gas solutions, including screw air compressor, piston air compressor, permanent magnet inverter air compressor, special air compressor for blowing bottles, special air compressor for laser cutting and a full set of post-treatment system.Professional solution to all your gas needs, high equipment reliability, remarkable energy saving effect.

Details Images

Screw compressor technical parameters
Model ALB-25HP ALB-30HP ALB-40HP ALB-50HP ALB-60HP

Free Air Delivery/ Discharge Pressure

M³/Min/MPa 3.1/0.7 3.8/0.7 5.2/0.7 6.8/0.7 7.8/0.7
2.9/0.8 3.6/0.8 5.0/0.8 6.2/0.8 7.3/0.8
2.7/1.0 3.2/1.0 4.3/1.0 5.6/1.0 7.0/1.0
2.2/1.3 2.9/1.3 3.7/1.3 4.8/1.3 5.8/1.3
Compressed series single stage
Environmental temperature -5ºC-+45ºC
Cooling mode Air-Cooled
Discharge Temperature ºC 55ºC
LubricantL L 18 30
Noise dB(A) ≤72
Drive method Direct drive
Power supply V/PH/HZ 380V/50HZ
power KW 18.5 22 30 37 45
Starting type Frequency conversion
Dimensions
(mm)
Length 1380 1500
Width 850 1000
Height 1160 1320
Weight KG 460 470 480 760 780
Air Outlet Pipe Diameter imch/mm R1 “ R1 1/2″

Company Profile
HangZhou CHINAMFG Drilling Equipment Co., Ltd. mainly provides holistic drilling solutions, serving the mining, stone crushing, water conservancy drilling industry, to help you solve the problem of drilling at high efficiency and low cost. We mainly provide mobile air compressors, drilling rigs, hammer, drill bit, crushers, underground water detector.We are your trustworthy partner.

FAQ
1.Is it difficult to operate and make the graph?
The instrument is easy to operate and we will send you the detailed operation manual via email.
The detector directly mapping with 1 button, no need computer drawing mapping.

2.What is the accuracy?
Our natural electric field instruments have been made for more than 10 years, with advanced technology and market test. We have obtained many invention patents. Our customer feedback rate reaches 100%. Accuracy over 95%.
3.How about after-sales service?
2 year warranty.Free data service for life.The professional geologist give the suggestions and 24hours online.

 

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Angular
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Custom 11kw 15HP Running Stably Zero Failure Rate Screw Air Compressor   air compressor for saleChina Custom 11kw 15HP Running Stably Zero Failure Rate Screw Air Compressor   air compressor for sale
editor by CX 2023-10-17

China Best Sales Yangma 55 Air Compressor for Construction Machinery air compressor price

Product Description

Products Description

Product Name Excavator Part Air Compressor YangMa 55
Quality Excellent Quality
Application Excavator
Color as photos show
Model Number Excavator Part Air Compressor YangMa 55
Warranty 3 months
MOQ 1 Set
Supply Ability 3000pcs per week
Delivery Detail Usually Within 3 Days After Payment Receipt
Port HangZhou
Delivery Methods Express:DHL Fedex EMS UPS or by Air/Sea
Payment Methods T/T Western Union

Company Advantages

1. Our main products:Hydraulic Pump,Engine Parts,Electric Parts,Chassis Parts,Excavator Bucket and Teeth,Radiator,Full Gasket Kit Series,Maintenance Parts.

2.We adhere to the management principles of “quality first, customer first and credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers.

3.Sufficient inventor. No matter when you make order, we can ship goods as soon as possible.

4.The best and more professional service and after-sales service.

Packing & SHIPPING:
Shipping: By express (DHL,FEDEX,TNT, UPS,EMS), By air, By sea.
Package:Standard exporting packing or as required.

 

         FAQ

1)Which brands of machinery you work with?
We supply parts for brands like: Hitachi,Caterpillar,Komatsu,Sumitomo,Hyundai,Kobelco,Liebherr,JCB,etc,We mainly do small to meddium size excavators.
2)Can you send us the price lists(so that we do not always bother you when we need the price info)?
Sorry that we do not have price list.You are welcomed to contact us if you have any interesting products.
3)Payment terms:
Flexible payment,T/T and WESTERN UNION.Your money is safe if we do business.
4)Shipment:
International express(DHL,Fedex,TNT…),Air and marine transportation are available.
As per your time request,considing of Volume and Weight in details,we will suggest you which is best way to shipment.
5)How do you make our business long-term and good relationship?
We keep good quality and competitive price to ensure our customers benefit.We respect every customer as our friend and we sincerely do business and make friends with them.no matter where they come from.

Type: Crawler Excavator, Air Condition Parts
Application: Excavator Part, Excavator
Certification: ISO9001: 2000
Condition: New
Size: Medium-Sized
Bucket Capacity: 1.0~1.5m³
Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Best Sales Yangma 55 Air Compressor for Construction Machinery   air compressor priceChina Best Sales Yangma 55 Air Compressor for Construction Machinery   air compressor price
editor by CX 2023-10-16

China manufacturer Air-Cooled Diesel Engine 912/913 Air Compressor 01174473 for CHINAMFG lowes air compressor

Product Description

Parts Name Air Compressor
Parts Number 01174473
Engine Model 912/913
Origin ZheJiang , China
size High Quality OEM Standard Size
Warranty 6 Months
MOQ One Set
Packing Neutral ,genuine ,customized packing paper package,wodden packing
shipping DHL/FEDEX/UPS/TNT/ARAMEX, AIR & SEA
Delivery Time Within 15 workdays according to your order.
Payment T/T, Western Union, Alibaba online payment

Why Choose US?

Packaging & Shipping

Company Profile

Production Workshop

Main Products

 

Certifications

 

Standard Component: Standard Component
Technics: Casting
Material: Aluminum Alloy
The Engine Model: 912/913
Transport Package: Wooden Case Packing
Trademark: SUPARTOS
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China manufacturer Air-Cooled Diesel Engine 912/913 Air Compressor 01174473 for CHINAMFG   lowes air compressorChina manufacturer Air-Cooled Diesel Engine 912/913 Air Compressor 01174473 for CHINAMFG   lowes air compressor
editor by CX 2023-10-16

China Custom Airbrush Compressor Kit Air-Brush Paint Spray Gun Mini Spray Gun Airbrush Compressor Kit for Art Car Model Tattoo air compressor price

Product Description

Airbrush Spray Gun Air Compressor Kit aerografo pistolas for Art Painting Airbrush Compressor Spray  Nail Tool

This mini compressor uses the special non-oil type design. It’s non-oil doesn’t contaminate the transmission medium. The output fluid is stable and the pressure range is from 0 to 25 psi.
This professional airbrush compressor kit set is widely used in model making, cake decoration, tattoos, nail art, etc. Perfect for artwork, nail art, body art, design painting, model painting, cake decoration, craft, models and fine art such as auto painting, textile and t-shirt painting.
.

Specifications:
AC transformer
AMP: 1.6A
Input AC100~240V 50/60HZ 0.6A
Air flow: 10.5L/min
Output DC 12V 1.6A
Auto stop: 25psi
Auto start: 15psi
Input AC 100~240V 50/60HZ 350MA
Working pressure: 2~15psi
Output DC 12V 500MA
 
This professional airbrush air compressor kit set is widely used in model making, cake decorating, tattoos, nail art, etc.
Perfect for artwork, nail art beauty, body art, design painting, model painting, cake decoration, craft, models and fine art such as car painting illustration, textile and t-shirt painting

Mini compressor

Airbrush gun

Color

Optional

Feed Type

Gravity

Dimension

136 x 102 x 66mm

Control

Single Action Push Button

Weight

0.70KG

Nozzle Dia.

0.2-0.6mm

Current

Less than 1000MA

Length of the airbrush

140mm

Power

10W

Cup capacity

7CC                                                           

AC Adaptor

DC12V/2A

 

 

 

 

Customized content

Color box

Max Air Pressure

25PSI

Products color

Output per min

9~ 15L/min

Compressure pressure

Air Pressure Grears

5 speeds

Compressor gear

Rubber Hose Length

2M

Open new mold

Sound

Quiet, Vibration Free

 

 

Features:
1. Suitable for spray gun with diameter 0.2-0.5mm, 1 button operation.
2. Especially suitable for makeup, nail, airbrush tattoo, airbrush hobby, etc.
3. With automatic start and stop functions, convenient and practical to use.
4. Electronic pressure adjustment, LED lights display different pressure gear.
5. The airbrush holder can be installed and disassembled freely, flexible
Package List:

1 x Airbrush Compressor
 

 

HangZhou Chenpai International Trade Co., Ltd mainly manufacture airbrush compressor, airbrush air compressor, mini airbrush compressor, mini air compressors, Piston airbrush compressors, wireless airbrush compressor, rechargeable handheld wireless airbrush compressor, Inflation pumps, Inflation compressors, Inflation air compressor, vacuum pumps, airbrushes, airbrush, airbrush guns, Airbrush gun, mini spray guns, airbrush machine, airbrush holder, airbrush hanger, airbrush air hose, airbrush hose, airbrush tattoo, airbrush tattoo stencil, airbrush tattoo stencil book, airbrush tattoo kits, airbrush tattoo inks, airbrush tattoo colors, airbrush makeup, airbrush makeup kit, airbrush cosmetics ,airbrush nail stencils, airbrush nail inks, Glitter tattoo, Glitter tattoo sets, airbrush accessories, airbrush accessory, airbrush cake kit and so on
 

Our products are specially suited for airbrush tHangZhou,tattoo,makeup,airbrush T-shirt,art designs,advertising spray,and so on. these maintenace-free,ultra-quiet,and light weight. products have a proven track record of quality, durability, and reliability.

Application Fields


Productive Process

Certificate
Exhibition

Packing &Shipping :

Our Servies&Team

Fast respond time less than 8 hours;

Product using video support, products videos and pictures for marketing support;

Business identity inquiry, best suitable model supply, detailed products introduction, CHINAMFG discount price;

Best Shipping method option, satisfied customized/private label service offered, extra spare parts match for bulk order;

100% quality inspection before shipping, 

Q : Do you provide customized logo or box for the airbrush/airbrush kits ?
Yes, we do. For the customized logo, it will take 1-3 days. For the customized box, it will take 3-7days.
Q Are you manufacturer or trading company?
A : We are real manufacturer instead of trading company. We are located in ZHangZhoug, China. We mainly focus on the airbrush, airbrush compressor, airbrush accessories.
Q. What is your warranty for the compressor and airbrush?
A:Warranty period for the compressor & airbrush is normally 1 years.  
NOTE: not including users’s misuse or damage during transportation.
Q.Can you supply any customized service?
A:we have gained a lot of experience on OEM assembly of Airbrush Compressor.
The Airbrush compressor & Airbrush can have different size, layout, customer logos and labels. We also want to apply the experience to Airbrush Compressors & Airbrush as we have good design and engineering team. We will strictly follow the principal that we won’t disclose or sell customer unique designs or jointly developed products to another third party.
Q : DOES THE AIRBRUSH AND MINI AIR COMPRESSOR HAS READY STOCK?
A : Yes, most of them has ready stock.
Q:What is your lead time? 
Usually we ship the orders in 1-3 days if the order quantity is small. But it will take a little bit longer if with heavy burden of production task. It also takes more time with customized products

Material: Stainless Steel
Usage: Body Art
Set: Set
Disposable: Non-Disposable
Max.Pressure: 25psi
Feed Type: Gravity
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China Custom Airbrush Compressor Kit Air-Brush Paint Spray Gun Mini Spray Gun Airbrush Compressor Kit for Art Car Model Tattoo   air compressor priceChina Custom Airbrush Compressor Kit Air-Brush Paint Spray Gun Mini Spray Gun Airbrush Compressor Kit for Art Car Model Tattoo   air compressor price
editor by CX 2023-10-12

China Professional Skid Mounted Towable Portable Diesel Screw Air Compressor for Mining / Quarry supplier

Product Description

Small compact portable screw air compressor

This series primarily used with construction and mining required 80-110 mm DTH drill, bolting rig, various hand held drill machines, drifters, blasting equipment and various air source requirement.
 
Reliable and durable with optimized control system for drastic drop of energy consumption.
 
All with EU3A compatible engine.
 

Model No F. A. D
m3/min
Pressure
(Bar)
Engine power
(Kw)
Air End Weight
(Kg)
Type
40SCY-7 4.5 7 37 Single Stage
Compression
860 2 Wheels
110SCY-8 13 8 110 Single Stage
Compression
2450 4 Wheels
110SCY-10 12.5 10 110 Single Stage
Compression
2450 4 Wheels
110SCY-14.5 11 14.5 110 Single Stage
Compression
2450 2/4 Wheels
118SCY-15 12 15 110 Single Stage
Compression
2550 4 Wheels

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Can air compressors be used for inflating tires and sporting equipment?

Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:

1. Tire Inflation:

Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.

2. Sporting Equipment Inflation:

Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.

3. Air Tools for Inflation:

Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.

4. Adjustable Pressure:

One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.

5. Efficiency and Speed:

Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.

6. Portable Air Compressors:

For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.

It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China Professional Skid Mounted Towable Portable Diesel Screw Air Compressor for Mining / Quarry   supplier China Professional Skid Mounted Towable Portable Diesel Screw Air Compressor for Mining / Quarry   supplier
editor by CX 2023-10-12

China Standard High Pressure 30 Bar 4.5 M3/Min 160 Cfm 45 Kw Air/Water Cooled Direct-drive Oil-Free Pm VSD Two-Stage Rotary Screw Type Air Compressor for Sale air compressor CHINAMFG freight

Product Description

2~40bar DIRECT-DRIVE WATER-INJECTED OIL-FREE SCREW AIR COMPRESSOR (PM VSD)
 

1. Low temperature means more efficiency
With an exceptionally low running temperature of less than 60ºC, near isothermal compression is achieved. 
The superior cooling capability of water removes the heat and gives more air per kW of power.
This also eliminates the need for an internal cooler and aftercooler, the associated power consumption reduces pressure drop to a minimum.

2. Cutting the maintenance cost
Spare parts only need air filter elements and water filter elements
Low operating temperature ensures the long service life of the screw air end, avoiding expensive maintenance costs for the screw rotor.
Low temperature reduces the stress on other components ensuring long life.

3. Avoiding the costs of extra energy to combat pressure drop
These costs, although not apparent at the time of purchase, are very high and contribute substantially to the total cost of ownership.

4. No Gearbox No need for associated oil lubrication.

5. Simple structure 
Fewer moving parts than the dry oil-free screw air compressor, meaning there is less to go wrong, 
while balance bearing loads extend the compression element service life for low-cost operation. 

 

Product Parameters

 

 

Product Description

 

Company Profile

 

 

Hot Sale Products

 

 

 

           2~10bar Oil-injected                        7~16bar All-in-1                       Small Single-phase
       Screw Air Compressor                   Screw Air Compressor                 Screw Air Compressor  

 

         2~40bar 100% Oil-free                   8~12bar 100% Oil-free                Diesel Engine Portable
       Screw Air Compressor                   Scroll Air Compressor                 Screw Air Compressor  

 

 

Main Product

 

What we can supply:

* Oil-injected Screw Air Compressor (2~16 bar)
* All-in-1 Screw Air Compressor with Tank, Dryer, and Filters (7~16 bar)
* Single-phase Small Screw Air Compressor for Home use (8~10 bar)
* Water-injected Oil-free Screw Air Compressor (2~40 bar)
* Oil-free Scroll Air Compressor (8~12 bar)
* Diesel&Electric Engine Portable Screw Air Compressor (8~30 bar)
* Air Dryer, Air tank, Filters, and other Spare parts

 

After-sales Service: 24*7 Online Services and Video Guide
Warranty: 1 Year for The Whole Machine & 2 Years for Air End
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Standard High Pressure 30 Bar 4.5 M3/Min 160 Cfm 45 Kw Air/Water Cooled Direct-drive Oil-Free Pm VSD Two-Stage Rotary Screw Type Air Compressor for Sale   air compressor CHINAMFG freightChina Standard High Pressure 30 Bar 4.5 M3/Min 160 Cfm 45 Kw Air/Water Cooled Direct-drive Oil-Free Pm VSD Two-Stage Rotary Screw Type Air Compressor for Sale   air compressor CHINAMFG freight
editor by CX 2023-10-11

China Best Sales Powerful Motivation 24bar Screw Air Compressor for Night Operation air compressor repair near me

Product Description

Product Description

Introduction

This unit is a two-stage compression oil-injected twin-screw compressor driven by a diesel engine and air-cooled, which can be easily moved according to work needs.

This unit is powered by a CHINAMFG brand CHINAMFG engine and the compressor head is specially customized, so the unit has good power, economy and reliability. The maximum working altitude of the unit can reach 2000 meters, and it can work continuously at full load under the temperature environment of -20ºC~+45ºC.

This unit has reasonable layout, complete functions, simple operation and maintenance, and beautiful appearance. The unit adopts a fully enclosed and silent design to make it have lower noise. The dual-pressure unit is equipped with a high and low pressure selector switch on the dashboard, which can provide 2 different working pressures at any time. All the display instruments on the dashboard have night vision function, which is convenient for night operation.

 

Product Parameters

Main Machine HF29-24  
Air flow (m³/min) 29
Working pressure (bar) 24
Exhaust oil content (PPM) £5 
Exhaust temperature (ºC) 100ºC
Compressor oil volume (L) 100
Air tank volume (L) 160
Compression series 2
Drive mod Coupling drive
Cooling mode Air cooling
Noise ( dB ) 80±5
Dimension (L×W×H) (mm) 3950×2000×2300
Weight (kg) 4700
Air supply valve specification × quantity G1 1/2″,G2 1/2 “
Diesel engine Yuchai
Engine model YC6MK400-H300
Full load working speed  (RPM) 1850
Output power at rated speed ( Kw) 295 kw
Coolant capacity ( kg ) 76
Lubricating oil capacity ( L ) 30
Cylinder number 6
Fuel tank volume ( L ) 420

Working Site

Company Profile

FAQ

1.Are you trading company or manufacturer?
We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.

2. Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.

3.How about your machine quality?
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.

4. Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.

5. What about the qaulity warranty?
We offer one-year quality warranty for machines’ main body.

6. How long can you deliver the machine?
Generally, we can deliver the machine in 7 days.

After-sales Service: Online Support, Field Maintenance
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: Horizontal
Samples:
US$ 35000/Set
1 Set(Min.Order)

|
Request Sample

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Best Sales Powerful Motivation 24bar Screw Air Compressor for Night Operation   air compressor repair near meChina Best Sales Powerful Motivation 24bar Screw Air Compressor for Night Operation   air compressor repair near me
editor by CX 2023-10-09

China OEM Low Noise Stationary Rotary Screw Type Air Compressor for Industrial with Good quality

Product Description

COMPANY PROFILE

KY-200KYG Air Compressor (can be customized) :

GENERAL FEATURES:
Permanent magnet inverter compressor because of its energy saving and high efficiency has become a hot and bright spot of the industry, the original air compressor energy consumption on the market, is gradually being the permanent magnet inverter compressor to replace or replacement, users can directly bring cost saveing of 20%-40%.
With the development of science and technology, air compressor is widely used in many industries such as machinery, metallurgy, building materials, electric power, chemical industry, food, textile and so on. However, the air compressor belongs to the high energy consumption equipment, power consumption in some industries accounted for more than 30% og the power consumption of production, it is commonly known as “electric tiger”.
SPECIAL FEATURES:
1,AIR PRESSURE STABILLTY
Due to the use of screw air compressor variable frequency stepless speed regulation characteristics of inverter, inverter controller or regulator through internal PID, can smoothly start; on consumption volatility is relatively large occasions, and can quicklyh adjust the response. Compared with the upper and lower limit switch control of the power frequency operation, the air pressure stability increases exponentially.
2,START NO IMPACT
Because the transducer itself contained the function of soft starter, starting current within the maximum rated current of 1.2 times, compared with the start frequency in general more than 6 times the rated current, start a little impact.
This impact is not only on the grid, the impact of the entire mechanical system, but also greatly reduced.
3,VARIABLE FLOW CONTROL
Power driven air compressor can only work in an exhaust, inverter air compressor can work in a wide range of exhaust. Frequency converter is based on the actual use of gas in real time to adjust the motor speed to control the amount of exhaust.
When the air volume is low, the air compressor can be automatically dormant. thereby greatly redcing the energy loss. The optimized control strategy can further improve the energy saving effect.
4,AC POWER SUPPLY VOLTAGE BETTER
Because of the over modulation technology of the inverter, the output voltage of the motor can be output when the voltage of the AC power supply is low, and the voltage of the output to the motor is too high.
For the generation of power, frequeucy conversion drive can show its advantages.
5,AC POWER SUPPLY VOLTAGE BETTER
Most of the working condition of the frequency conersion system is lower than the rated speed of the work, the host machine noise and wear down, prolongmain- tenance and service life.
If the fan is also driven by frequency conversion, can significantly reduce the nosie of air compressor work.

TECHNICAL PARAMETERS:

Model Power Pressure
(Mpa)
 
Air flow Noise Stage Exit pipe diameter
 
Weight
(KG)
Dimensions
(mm(LxWxH)
 
PE-10AVF 7.5 8 1.0 60±2
 
Single grade
 
3/4
 
280 1000*600*100
10 0.8
PE-20AVF   8 2.2 60±2
 
Single grade
 
1 480 1150*800*1280
10 1.8
PE-30AVF 22 8 3.8 62±2
 
Single grade
 
11/4
 
520 1150*800*1280
10 3.0
PE-40AVF 30 8 5.0
 
63±2 Single grade
 
11/4
 
550 1150*800*1280
10 4.4
PE-50AVF 37 8 6.8
 
63±2 Single grade
 
11/2
 
650 1300*1000*1450
10 5.4
PE-60AVF 45 8 8.0
 
65±2 Single grade
 
11/2
 
750 1300*1000*1450
10 6.8
PE-75AVF   8 9.7 65±2 Single grade
 
2 1200 1700*1270*1500
  10 8.6
PE-100AVF 75 8 13.2 65±2 Single grade
 
2 1350 1700*1270*1500
10 16.1

ENERGY-SAVING EFFECT OF TWO-STAGE COMPRESSION:

According to the engineering thermodynamics theory, it is the most economical for the compressor with isothermal compres-
sion.Two-stage oil-injection screw air compressor is designed based on the above theory, it fully improves the cooling function through oil injection during the two-stage compression, plus the inter-stage cooling, by ensuring the temperature is above the pressure dew point, it can be close to isothermal compression as possible, so as to achieve the energy-saving effect.
At the same time, due to low compression ratio of the two-stage airend, the “internal leakage”is largely reduced in the compression process compared with the single-stage compression airend with the same power and same discharge pressure.On the contrary, the diplacement is increased, which means that the efficiency is increased, and the specific power is reduced.
Compared with the ordinary two-stage permanent magnetic compressor on the market,Moair uses the two-drive and two-stage compres- sion, which directly avoids the power loss inside the gear set.
Energy-saving advantages:
1,To reduce the bearing load, and improve the volumetric efficincy;
2,In the case of partial load operation, it can improve efficiency and become energy saving to a better extent.
3,The energy saving of two-stage screw air compressor is up to 15%-25% than that of the one-stage air compressor, which can save the considerable electricity fees every year.

About shipping

Company information

Why choose us?

 

Certificate

FAQ:

1.Q:What do you need machine and quotation?

A: According to capacity and factory size ,we can give you details.

2.Q: Are you trading company or manufacturer ?

A:We are factory.

3.Q:How do we pack machine?

  A:Exporting wooden cases

4.Q:Lead time

A:Around 25-30 days after the receipt of your deposit.

 

Type: High Pressure Gun
Usage: Paint Spray Gun, Washing Gun, Hopper Gun, Garden Gun
Working Style: Rotary Type
Air Wrench Type: Pulse pneumatic wrench
Pneumatic Drill Range: Tunnel
Degree of Automation: Automatic
Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China OEM Low Noise Stationary Rotary Screw Type Air Compressor for Industrial   with Good qualityChina OEM Low Noise Stationary Rotary Screw Type Air Compressor for Industrial   with Good quality
editor by CX 2023-10-07

China Standard Oil-Less Air Compressor for Analytic Instrument lowes air compressor

Product Description

CHINAMFG oil-less air compressor is specially designed to support AAS, ICP-OES, ICP-MS, Termovap Sample Con centrator, etc. with pure, dry compressed air and constant pressure.
 

 

Note: 
AA oil free air compressor no need manual drainage, can be constantly use;
AA*A oil free air compressor adopts electronic water removal, mainly used in high temperature, high humidity area, can ensure that the outlet is dry. 

Functions and Features:
Double cylinder piston compressor, stable and reliable operation, put out pure oil without lubri cate;
Original air-cooled screw centrifugal dehydrator, cooling of compressed air rapidly, centrifugal separation of condensate;
Optional electronic dehydrator, water removal thoroughly;
Stainless steel storage sink which can prevent rust;
Vertical design, independent suspension damping mechanism, nest egg type sound-absorbing sponge, less vibration, lower noise;
Triple filters makes gas sophisticate and pure.

Specification:

model Displacement Press power Main character Overall Dimension
W×D×H mm
ACA320 20L/min 0.05~3kg 250W Oil-free dual-piston compressor     box-type silent 400×300×635
AA320 20L/min 0.05~3kg 260W Automatic drainage 430×335×676
AA320A 20L/min 0.05~3kg 320W Automatic drainage, internal electronic water removal 430×335×676
AA530 30L/min 0.05~5kg 600W Automatic drainage 500×335×706
AA530A 30L/min 0.05~5kg 660W Automatic drainage, internal electronic water removal 500×335×706
AA530Z 50L/min 0.05~5.5kg 800W Automatic drainage, high efficiency 500×335×706
AA650 50L/min 0.05~6kg 1250W Automatic drainage. 560×400×830
AA780 80L/min 0.05~7kg 1550W Automatic drainage. 560×400×830

After-sales Service: 1 Year
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Standard Oil-Less Air Compressor for Analytic Instrument   lowes air compressorChina Standard Oil-Less Air Compressor for Analytic Instrument   lowes air compressor
editor by CX 2023-10-07